

ESPERIENZE DIDATTICHE CON L'USO DELLE CALCOLATRICI SCIENTIFICHE E GRAFICHE

MATHESIS Società Italiana di Scienze Matematiche e Fisiche

Scuola Estiva di Matematica

per i Docenti di Scuola Secondaria di secondo grado

Telese Terme (BN), 27 Luglio 2015

Elísabetta Fabbrí

Francesco Buíní

DALLE CALCOLATRICI SCIENTIFICHE ALLE CALCOLATRICI GRAFICHE

Collaborazione con altri docenti

Il ruolo della calcolatrice

Cosa cercano gli studenti in una calcolatrice

Cosa cercano gli insegnanti in una calcolatrice

Il ruolo della calcolatrice

Utilizzando le calcolatrici scientifiche e grafiche si possono svolgere sia attività didattiche per la verifica e il potenziamento delle conoscenze già acquisite, sia esperienze per la scoperta e la definizione di nuovi concetti.

Insomma "**si può fare didattica e ricerca matematica**".

Le nostre linee guida

A partire da opportune situazioni problematiche: Fare didattica della matematica Scoprire cicli e invarianti Fare ricerca matematica Confrontare diverse strategie risolutive Scoprire le potenzialità delle calcolatrici Superare i limiti dello strumento Incuriosire e appassionare i nostri studenti Incuriosire e appassionare i nostri colleghi

Il Gruppo di Lavoro del Teachers Meeting 2015

Francesco BOLOGNA

Francesco BUINI

Elisabetta FABBRI

Lisa LORENZETTI

Giovanni NICOSIA

Mariangela REPETTO

Marco TAROCCO

Le proposte dell'Isp. E. Ambrisi

- 1. La sai l'ultima? E la prima?
- 2. Numeri mirabili e attrattori
- 3. Polinomi Monici
- 4. Evviva le differenze!

La sai l'ultima? E la prima?

Qual è l'ultima cifra?

3

Qual è la prima cifra?

3²⁰¹⁵ 8

Math ERROR [AC] :Cancel [∢][▶]:Goto

2015

CLASSWIZ f x - 991EX

Qual è l'ultima cifra di 3^{2015} ?

Scopriamo la calcolatrice. <u>论。此。大,翻</u>。 1:Calculate Entra nel menu 1: Calculate 1234567890 Qual è il numero naturale più grande 1234567890 che si può scrivere senza essere 12345678901 trasformato in notazione scientifica? 1.23456789×10¹⁰ Qual è il massimo valore √⊡⁄ ⊠ ۸ 3^{20} dell'esponente per cui puoi 3486784401 visualizzare l'ultima cifra? 3^{21} $3^{x} < 10^{10}$ 1.04603532×10¹⁰

Qual è l'ultima cifra di 3²⁰¹⁵?

Scopriamo gli invarianti. Entra nel menu 9: Table Rappresenta in una tabella le potenze del 3, ovvero i valori della funzione

$$y=f(x)=3^{x}.$$

Che cosa puoi dedurre? Esiste una regolarità?

Qual è l'ultima cifra di 3²⁰¹⁵?

Il menu 9: Table della calcolatrice fx – 991EX CLASSWIZ permette di visualizzare tabelle con due funzioni affiancate.

Rappresenta in unastessa tabella lefunzioni $y = f(x) = 3^x$

$$y = g(x) = x / 4$$

Per visualizzare le frazioni miste

Qual è l'ultima cifra di 3^{2015} ?

Qual è l'ultima cifra di a n ?

Qual è l'ultima cifra di aⁿ?

dove a è una qualsiasi cifra da 0 a 9 ed n un qualsiasi numero naturale

Completa la seguente tabella:

а	0	1	2	3	4	5	6	7	8	9
uc a ⁿ	0	1		1,3,9,7						

Qual è l'ultima cifra di aⁿ ?

E se il numero a fosse formato da più cifre? Si può verificare e anche dimostrare facilmente che l'ultima cifra della potenza a ⁿ dipende esclusivamente dall'ultima cifra della base a.

E se il numero a fosse un numero intero? Per i numeri negativi bisognerà fare attenzione al segno che sarà positivo nel caso di esponenti pari e sarà negativo nel caso di esponenti dispari.

Qual è la prima cifra di 3²⁰¹⁵?

Qual è la prima cifra di 3²⁰¹⁵?

Qual è il massimo valore dell'esponente per cui puoi visualizzare il numero in notazione scientifica?

3²⁰⁹ [√] [®] [▲] 5.228080143×10⁹⁹ 3²¹⁰ [√] [®] [▲]

¥÷₁<u>₽</u>₂₀åå₃(⊞)₂ <u>14,5,101,5,4</u>,5,100,5

1:Calculate

[AC] :Cancel [∢][▶]:Goto

Come si può evitare di andare per tentativi?

 $3^{x} < 10^{100}$

I logaritmi: $log3^{x} < log10^{100}$

209.5903274

Qual è la prima cifra di 3²⁰¹⁵?

I logaritmi si usano anche per trovare le cifre significative di numeri molto grandi:

 $3^{2015} = 10^{\log 3^{2015}} = 10^{2015 \cdot \log 3}$

 $10^{2015 \cdot \log 3} = 10^{k+d} = 10^{k} \cdot 10^{d}$

dove k è la parte intera (caratteristica)

d è la parte decimale (**mantissa**) quindi 10^k è un 1 seguito da k cifre 0 e solo il fattore 10^d determina le cifre significative

Qual è la prima cifra di 3²⁰¹⁵ ?

Qual è la prima cifra di 3²⁰¹⁵? $10^{2015 \cdot \log 3} = 10^{k+d} = 10^{k} \cdot 10^{d}$ $2015 \times 10^{\circ} g(3)$ dove \mathbf{k} è la parte intera = 961 961.3993283 d è la parte decimale = 0,3993283 $10^{0.3993283}$ Quindi solo il fattore 10^d 2.508004434determina la prima cifra che pertanto è

Le tavole logaritmiche

Prima dell'avvento delle calcolatrici scientifiche era necessario ricorrere alle tavole dei logaritmi, con la distinzione tra caratteristica e mantissa.

500	- 2750	: N																		
1	P. P.	N	Mant.	d	N	Ma	nt.	d	N	M	ant.	d	N	Ma	nt.	d	N	Ma	nt.	d
	18	2500 2501 2502 2503	39 794 811 829 846	27 18 17 17	2550 2551 2552 2553 2554	10	654 671 688 705 799	17 17 17 17 17	2600 2601 2602 2603 2604	41	497 514 531 547 564	17 17 16 17	2650 2651 2652 2653 2654	42	325 341 357 374 390	16 16 17 10	2700 2701 2702 2703 2704	43	136 152 169 185 201	16 17 16 16
0107010	3.6 57.0 10 8	2505 2506 2507 2508 2509	39 881 898 915 933 950	18 17 11 14	2555 2556 2557 2558 2559	40	739 756 773 790 807	17 17 17 17 17	2605 2606 2607 2608 2609	41	581 597 614 631 647	17 16 17 17	2655 2656 2657 2658 2659	42	406 423 439 455 472	16 17 16 16	2705 2706 2707 2708 2709	43	217 233 249 265 281	16 16 16 16
789	12,6 14,4 16,2	2510 2511 2512 2513 2514	39 961 39 983 40 005 019 03		2560 2561 2562 2563 2564	40	824 841 858 875 892	17 17 17 17 17	2610 2611 2612 2613 2614	41	664 681 697 714 731	17 16 17 17	2660 2661 2663 2663 2664	42	488 504 521 537 553	10 10 10 10 10	2710 2711 2712 2713 2713 2714	43	297 313 329 345 361	16 16 16 16
1 24 23 4	17 1.7 3.4 5.1 6.8	2515 2516 2517 2518 2519	40 05 07 08 10 12		2565 2566 2567 2568 2569	40	909 926 943 960 976	17 17 17 17 10	2615 2616 2617 2618 2619	41	747 764 780 797 814	10 10 13 13	2663 2664 2663 2664 2664	42	570 586 602 619 635	16 16 17 16	2715 2716 2717 2718 2719	43	377 393 409 425 441	16 16 16 16 16
10 -01-00.01	8,5 10,2 11,9 13,6 15,3	2520 2521 2522 2523 2524	40 14 15 17 19 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2570 2571 2572 2573 2573	40 41	993 010 027 044 061	13	2620 2621 2622 2623 2624	41	830 847 863 880 890		267 267 267 267 267	3 42	651 667 684 700 716	16	2720 2721 2725 2725 2725 2725	13	457 473 489 505 521	16 16 16 16 16 16 16
1	16 1.6	2523 2526 2527 2528 2528	40 22 24 26 27 29	63185	2575 2576 2577 2578 2578 2579	41	078 095 111 128 145	11111	2625 2620 2627 2627 2625	41	911 929 946 963 979		267 267 267 267 267	5 42 6 7 8 9	731 749 765 781 797		2720 2720 2721 2721 2721	43	537 553 569 584 600	10
0 04401	3.2 4.8 6.4 8.0 9.6	2530 2531 2532 2533 2533	40 31 32 34 36 38	29641	7 2580 7 2581 7 2581 8 2581 7 2583 7 2584	41	162 179 196 215 229	11111	263 263 263 263	4 42	011 021 011 011 011 011 011	11111	268 268 268 268 268	0 43 1 2 3 4	813 834 844 863 874	11	273 273 273 273 273		616 632 648 664 680	10 10 10
100	$ 11.2 \\ 12.8 \\ 14.4 $	253 253 253 253 253	5 40 39 6 41 7 43 8 44 9 46	85229.6	7 2585 7 2586 7 2586 7 2587 7 2588	41	240 263 280 290 313	1 1 1 1 1	263 263 263 263 263	4	2 07: 09: 11 12 14	1 11111	268 263 263 263 263 263	5 42 6 7 8 9	89 91 92 94 95	11 20 20 20 20 20 20 20 20 20 20 20 20 20	273 273 273 273 273 273	5 43 6 7 8 9	696 711 721 743 759	11
1400 1911	15 1.5 3.0 4.5 6.0	254 254 254 254 254	0 40 48 1 50 2 51 3 53 4 53	30852	7 259 259 259 7 259 7 259	41	334 34 36 38 38 39	1 11111	264 264 264 264 264	4	2 16 17 19 21 22	07306	269 269 269 269 269	0 43	97 99 00 02 01	51840	274 274 274 274 274 274	0 43 1 2 3 4	779 791 807 821 834	11111
5 678	7.5 9.0 10.5 12.0	254 254 254 254	5 40 50 6 51 6 6 8 6 8	9 6 13	259	5 41	41 43 44 46	10741	264 264 264 264	4	2 24 25 27 29	395010	269 269 269 269 269	5 43	05 07 08 10	62840	274 274 274 274 274	5 43	85 87(88) 903	1111

28

Qual è la prima cifra di a n ?

Anche in questo caso è possibile generalizzare il problema e quindi con lo stesso metodo si può determinare la prima cifra di una qualsiasi

potenza del tipo **a**ⁿ

dove a è un qualsiasi numero reale positivo ed n è un qualsiasi numero reale positivo.

Una **procedura iterativa** è un algoritmo che consente la costruzione dei successivi elementi a partire dal primo, attraverso la ripetuta applicazione dell'algoritmo stesso.

Secondo Hofstadter un numero si dice **mirabile** se 1 è l'attrattore della procedura iterativa che associa al numero la sua metà se il numero è pari e il suo triplo aumentato di 1 se è dispari.

In un procedimento iterativo l'attrattore indica il numero (o i numeri) a cui tendono i valori ottenuti nelle successive iterazioni, all'aumentare del numero di quest'ultime.

Scegli un qualsiasi numero naturale, minore di 1.000.000, e stabilisci se tale numero è mirabile secondo un certo procedimento iterativo.

La nostra procedura consiste nel prendere un numero naturale e nel fare la somma dei quadrati delle cifre che lo compongono.

Il numero scelto sarà mirabile se, sottoposto alla procedura iterativa, ha come attrattore 1.

fx - CG 20

Scopriamo la calcolatrice.

Entra nel menu 4 Spreadsheet, ovvero il foglio di calcolo.

Apri un nuovo file e salvalo con il nome "MIRABILI".

Il foglio di calcolo permette di impostare e visualizzare immediatamente i risultati di procedimenti iterativi.

Quando si progetta un foglio di calcolo è opportuno impostarlo in modo che sia facilmente modificabile.

La procedura iterativa scelta per il nostro esercizio è interessante perché richiede di ottenere in distinte celle tutte le cifre del numero scelto in partenza e di tutti quelli che si ottengono successivamente.

Se impostato in maniera opportuna, il programma potrà essere facilmente adattato anche per la trasformazione di un numero naturale dal sistema di numerazione decimale ad un altro, come per esempio il binario.

Premi prima ALPHA EXP per inserire un testo in una cella e SHIFT ALPHA per inserire più lettere di seguito.

Inserisci nella cella A2 la base del sistema di numerazione (10) e nelle celle da B2 a G2 gli esponenti (da 5 a 0).

Premi SHIFT 5 se vuoi cambiare il formato delle celle.

	Deg Norm1 [d/c] Real MIRABILI						
MIR	А	В	С	D			
1	BASE	ESPONE	NTI				
2	10	5	4	3			
3	NUM						
4							
5							
"BASE							
FILE EDIT DELETE INSERT CLEAR >							

Inserisci un numero qualsiasi nella cella verde A4.

	DegNor	m1 d/c Re	MIRABI	LI		DegNor	m1 d/c Re	a MIRABI	LI
MIR	Α	В	С	D	MIR	E	F	G	Н
1	BASE				1				
2	10	5	4	3	2	2	1	0	
3	N	100000	10000	1000	3	100	10	1	
4	123456				4				
5					5				
=\$A2^B2								=\$4	\2 <u>^G</u> 2
FILL SORTASC SORTDES				FILI	SORTASC	SORTDES			

Nel catalogo della calcolatrice (SHFT 4) trovi due funzioni utili per impostare le formule che permettono di ottenere nelle celle da B4 a G4 le cifre del numero scelto nella cella verde A4 :

parte intera

MOD(resto della divisione tra dividendo e divisore

Catalog	
ImP	
IneqTypeIntsect	
IneqTypeUnion	
Int	
J (
Intg	
INPUT	CAT

Int

Catalog	
Min(
minX	
minY	
Mod	
MOD (
MOD_Exp(
(INPUT)	CAT

Nelle celle da B4 a B50 inserisci la formula per ottenere la cifra delle centinaia di migliaia dei numeri inseriti nelle celle della colonna A.

Nelle celle da C4 a G50 inserisci le formule per ottenere le altre cifre dei numeri inseriti nelle celle della colonna A.

	Des Norm1 d/c Real MIRABILI									
MIR	Α	D								
1	BASE									
2	10	3								
3	NUM	100000	10000	1000						
4	123456	1								
5		0								
FILL	=Int (A4÷B\$3)									

	Deg Norr	nl d/c Re	MIRABI	LI			
MIR	Α	В	С	D			
1	BASE	ESPONE:	NTI				
2	10	5	4	3			
3	NUM	100000	10000	1000			
4	123456	1	2	3			
5		0	0	0			
=Int $(MOD(\$A4, B\$3) \div C\$$							
FILL	SORTASC	SORTDES					

	LI						
MIR	E	F	G	Н			
1							
2	2	1	0				
3	100	10	1				
4	4	5	6				
5	0	0	0				
=Int $(MOD(\$A4,F\$3)\divG\$$							
FILL	SORTASC	SORTDES					

Nella cella H3 scrivi SQC (somma dei quadrati delle cifre).

Nelle celle da H4 a H50 imposta la formula per determinare la somma dei quadrati delle cifre dei numeri contenuti nella colonna A.

Nelle celle da A5 ad A50 copia il numero ottenuto nella colonna H della riga precedente.

	DegNor	m1 d/cRe	MIRABI	LI				
MIR	E	F	G	H				
1								
2	2	1	0					
3	100	10	1	SQC				
4	4	5	6					
5	0	0	0					
FILL	FILL SORTASC SORTDES SORT							

	DegNor	m1 d/cRe	a MIRABI	LI					
MIR	E	F	G	н					
1									
2	2	1	0						
3	100	10	1	SQC					
4	4	5	6	91					
5	0	0	0	0					
	$=B4^{2}+C4^{2}+D4^{2}+E4^{2}+$								
FILL									

Deg Norm1			m1 d/c Re	d/c Real MIRABILI				
	MIR	Α	В	С	D			
	4	123456	1	2	3			
	5	91	0	0	0			
	6	82	0	0	0			
	7	68	0	0	0			
	8	100	0	0	0			
		=H4						
	FILL	SORTASC	SORTDES					

Inserisci un qualsiasi numero nella cella verde A4 ed osserva i numeri che ottieni nelle celle con sfondo rosso della colonna A per verificare se il numero scelto risulta mirabile oppure no.

	Deg Norm	1 d/c Re	d/c Real MIRABILI					
MIR	A	В	С	D				
4	234567	2	3	4				
5	139	0	0	0				
6	91	0	0	0				
7	82	0	0	0				
8	68	0	0	0				
			- 23	34567				
FILE	EDIT I	DELETE	SERT CLEA	\mathbb{R} \triangleright				
	DegNorm	1 d/c Re	MIRABI	LI				
MIR	Deg Norm A	1 d/cRe B	a]MIRABII C	LI D				
MIR 8	Deg Norm A 68	1 d/c Re B 0	a MIRABII C 0	LI D O				
MIR 8	Deg Norm A 68 100	1 d/c Re B 0	MIRABII C 0 0	LI D O				
MIR 8 9 10	Deg Norm A 68 100 1	1 d/c Re B 0 0	MIRABII C 0 0 0	LI 0 0				
MIR 8 9 10 11	Deg Norm A 68 100 1 1	1 d/c Re B 0 0 0	MIRABI C 0 0 0 0	LI D 0 0 0				
MIR 8 9 10 11 12	Deg Norm A 68 100 1 1 1	1 d/c Re B 0 0 0 0 0	MIRABII C 0 0 0 0 0	LI D 0 0 0 0 0				
MIR 8 9 10 11 12	Deg Norm A 68 100 1 1 1	1 d/c Re B 0 0 0 0	a MIRABI C 0 0 0 0 0	LI 0 0 0 0 0 =H11				

	DegNorr	nl d/cRe	d/c Real MIRABILI						
MIR	A	В	С	D					
4	270715	2	7	0					
5	128	0	0	0					
6	69	0	0	0					
7	117	0	0	0					
8	51	0	0	0					
			27	70715					
FILE	EDIT	DELETE IN:	SERTICLEA						
	DegNorr	n1 d/c Re	MIRABI						
MIR	Deg Norr A	nl d/cRe B	a MIRABI	LI D					
MIR 9	Deg Norr A 26	n1 d/cRe B 0	a MIRABI	LI D 0					
MIR 9 10	Deg Norr A 26 40	n1 d/c Re B 0 0	MIRABI C 0 0	LI D 0					
MIR 9 10	Deg Norr A 26 40 16	n1 d/c Re B O O O	MIRABI C 0 0						
MIR 9 10 11 12	Deg Norr A 26 40 16 37	n1 d/c Re B 0 0 0 0	MIRABI C 0 0 0 0						
MIR 9 10 11 12 13	Deg Norr A 26 40 16 37 58	n1 d/c Re B 0 0 0 0 0	MIRABI C 0 0 0 0 0						
MIR 9 10 11 12 13	Deg Norr A 26 40 16 37 58	n] (d/c) (Re B 0 0 0 0 0	a MIRABI C 0 0 0 0 0	LI 0 0 0 0 0 =H12					

	Deg Norn	nl d/c Re	d/cRealMIRABILI						
MIR	А	В	С	D					
4	987654	9	8	7					
5	271	0	0	0					
6	54	0	0	0					
7	41	0	0	0					
8	17	0	0	0					
			98	37654					
FILE									
	DegNorn	n1 d/c Re	MIRABI	LI					
MIR	Deg Norn A	nl d/cRe B	a]MIRABII C	LI D					
MIR 9	Deg Norn A 50	n1 d/c Re B 0	MIRABI C 0	D 0					
MIR 9 10	Deg Norr A 50 25	n1 d/c Re B 0 0	MIRABI C 0 0	LI D O O					
MIR 9 10 11	Deg Norm A 50 25 29	n] d/cRe B 0 0	MIRABI C 0 0 0	LI D 0 0 0					
MIR 9 10 11 12	Deg Norr A 50 25 29 85	n1 d/c Re B 0 0 0	MIRABI C 0 0 0 0	LI 0 0 0 0					
MIR 9 10 11 12 13	Deg Norr A 50 25 29 85 89	al d/c Re B 0 0 0 0 0	MIRABI C 0 0 0 0 0 0	LI D 0 0 0 0 0 0 0					
MIR 9 10 11 12 13	Deg Norr A 50 25 29 85 89	al d/c Re B 0 0 0 0	MIRABI	LI 0 0 0 0 0 =H12					

Osservando i risultati nelle celle rosse si deduce che, a partire da qualsiasi numero scelto nella cella verde, la procedura iterativa della somma dei quadrati delle cifre si riduce rapidamente alla somma dei quadrati delle cifre di un numero composto da sole due cifre.

Tenendo conto che secondo la procedura scelta i numeri del tipo **ab** hanno lo stesso comportamento dei numeri del tipo **ba**, non è difficile dedurre quali sono i numeri di due cifre che conducono a numeri mirabili:

> 10 – 13 e 31 – 19 e 91 – 23 e 32 – 28 e 82 – -44 – 49 e 94 – 68 e 86 – 70 – 79 e 97.

Se il numero scelto non è mirabile, la procedura iterativa della somma dei quadrati delle cifre risulta ciclica secondo la sequenza:

Esistono frequenti sequenze, come per esempio $25 \rightarrow 29 \rightarrow 85$ e $18 \rightarrow 65 \rightarrow 61$ che immettono nel ciclo. L'attività si potrebbe utilizzare anche per fare qualche esercizio del tipo:

Determinare se esistono ed eventualmente stabilire quanti sono i numeri di 3 cifre tali che la somma dei quadrati delle loro cifre è 91.

Determinare se esistono ed eventualmente stabilire quanti sono i numeri di 4 cifre tali che la somma dei quadrati delle loro cifre è 100.

Questa attività didattica potrebbe anche essere modificata scegliendo una diversa procedura iterativa.

Sia P(x) un polinomio di quarto grado monico, ovvero il suo coefficiente di grado massimo è 1.

Sappiamo inoltre che

P(2) = 4 P(3) = 9 P(4) = 16 P(5) = 25Determinare P(x).

CLASSWIZ f x - 991EX

$$P(x) = x^{4} + ax^{3} + bx^{2} + cx + d$$

$$P(2) = 4 \qquad 16 + 8a + 4b + 2c + d = 4$$

$$P(3) = 9 \qquad 81 + 27a + 9b + 3c + d = 9$$

$$P(4) = 16 \qquad 256 + 64a + 16b + 4c + d = 16$$

$$P(5) = 25 \qquad 625 + 125a + 25b + 5c + d = 25$$

 $\begin{cases} 8a + 4b + 2c + d = -12 \\ 27a + 9b + 3c + d = -72 \\ 64a + 16b + 4c + d = -240 \\ 125a + 25b + 5c + d = -600 \end{cases}$

visualizzare le soluzioni.

-14 -72 √⊡⁄ ⊠ z= precedenza, premendo = ogni volta -154che si inserisce un coefficiente e per

√7⁄ ⊠

of

Unknowns? $2 \sim 4$

16y +

IT.=-

1t = -

2z 3z

4z 5z

72 240

120

Con la calcolatrice otteniamo facilmente:

 $\begin{cases}
a = -14 \\
b = 72 \\
c = -154 \\
d = 120
\end{cases}$ quindi

$P(x) = x^4 - 14x^3 + 72x^2 - 154x + 120$

Ma non è l'unico metodo risolutivo, soprattutto se non avessi la calcolatrice a portata di mano.

Sia P(x) un polinomio di quarto grado monico, ovvero il suo coefficiente di grado massimo è 1.

Sappiamo inoltre che

P(2) = 4 P(3) = 9 P(4) = 16 P(5) = 25Determinare P(x).

Possiamo affermare che $P(x) = x^2$ per x = 2, 3, 4 e 5quindi $P(x) - x^2 = 0$ per x = 2, 3, 4 e 5ovvero $P(x) - x^2 = (x - 2) (x - 3) (x - 4) (x - 5)$ da cui $P(x) = (x - 2) (x - 3) (x - 4) (x - 5) + x^2$ e con semplici calcoli si ottiene di nuovo: $P(x) = x^4 - 14x^3 + 72x^2 - 154x + 120$

Pensa un polinomio P(x) di grado minore o uguale a 5.

Calcola

P(0), **P(1)**, **P(2)**, **P(3)**, **P(4)**, **P(5)** e **P(6)**

Scrivi i valori ottenuti nella tabella:

x	0	1	2	3	4	5	6
P(x)							

Il polinomio che hai pensato è P(x) =

fx - CG 20

 $P(x) = a x^2 + b x + c$

CASI

EDUCATIONAL PROJECTS

	x	0	1	2	3	4
	P(x)	3	0	1	6	15
	$\Delta P(x)$	-3	1	5	9	
	$\Delta \Delta P(x)$	4	4	4		
P(0) = c P(1) = a + a P(2) = 4a + a P(3) = 9a + a P(4) = 16a	b + c $- 2b + c$ $- 3b + c$ $+ 4b + c$	P(1) - P(0) P(2) - P(1) P(3) - P(2) P(4) - P(1)	b(0) = a + b 1) = 3a + b 2) = 5a + b 3) = 7a + b (1) = 3a + b (2) = 5a + b (3) = 7a + b (3) = 7a + b (4) = 3a + b (5) = 5a + b (5) = 7a + b (5) = 5a + b (5) = 7a + b (5) = 5a + b (5) = 7a + b (5) = 7	[P(2 [P(3 [P(4	P(2) - P(1)] - P(2)] - P(2)] - P(3)]	[P(1) - P(2) - P(3) - P(3)]
$\begin{bmatrix} 2a = \\ a + \\ c = \end{bmatrix}$	= 4 $b = -3$ 3		$\begin{cases} a = \\ b = \\ c = \end{cases}$	2 -5 3	P(x)=2	$2x^2 - 5$

$P(x) = a x^{3} + b x^{2} + c x + d$

x	0	1	2	3	4	5	6
P(x)	2	-3	-6	-1	18	57	122
$\Delta P(x)$	-5	-3	5	19	39	65	
$\Delta \Delta P(x)$	2	8	14	20	26		
$\Delta \Delta \Delta P(x)$	6	6	6	6			

P(0) = d

P(1) = a + b + c + d
P(2) = 8a + 4b + 2c + d
P(3) = 27a + 9b + 3c + d
P(4) = 64a + 16b + 4c + d
P(5) = 125a + 25b + 5c + d
P(6) = 216a + 36b + 6c + d

P(1) - P(0) = a + b + c	
P(2) - P(1) = 7a + 3b + c	ΔΔ
P(3) - P(2) = 19a + 5b + c	ΔΔ
P(4) - P(3) = 37a + 7b + c	ΔΔ
P(5) - P(4) = 61a + 9b + c	ΔΔ
P(6) - P(5) = 91a + 11b + c	ΔΔ

$\Delta \Delta Pl = 6a + 2b$	$\Delta \Delta \Delta P l = 6a$
$\Delta \Delta P2 = 12a + 2b$	$\Delta \Delta \Delta P2 = 6a$
$\Delta \Delta P3 = 18a + 2b$	AAAP3 = 6a
$\Delta \Delta P4 = 24a + 2b$	$\Delta \Delta A P 4 = 6a$
$\Delta \Delta P5 = 30a + 2b$	

 $P(x) = a x^{3} + b x^{2} + c x + d$

x	0	1	2	3	4	5	6
P(x)	2	-3	-6	-1	18	57	122
$\Delta P(x)$	-5	-3	5	19	39	65	
$\Delta \Delta P(x)$	2	8	14	20	26		
$\Delta \Delta \Delta P(x)$	6	6	6	6			

 $\begin{bmatrix}
6a = 6 \\
6a + 2b = 2 \\
a + b + c = -5 \\
d = 2
\end{bmatrix}
\begin{bmatrix}
a = 1 \\
b = -2 \\
c = -4 \\
d = 2
\end{bmatrix}$

 $P(x) = x^3 - 2x^2 - 4x + 2$

Pensa un polinomio P(x) di grado minore o uguale a 5.

Calcola

P(0), P(1), P(2), P(3), P(4), P(5) e P(6)

Scrivi i valori ottenuti nella tabella:

x	0	1	2	3	4	5	6
P(x)							

Che cosa puoi dedurre analizzando le colonne delle differenze?

Riprendiamo la calcolatrice.

Entra nel menu 4 Spreadsheet, ovvero il foglio di calcolo.

Apri un nuovo file e salvalo con il nome "DIFFEREN".

Il foglio di calcolo permette di impostare le tabelle per esprimere successive differenze dei valori dei polinomi.

Premi prima ALPHA EXP per inserire un testo in una cella e SHIFT ALPHA per inserire più lettere di seguito. Inserisci nella cella A2 l'incremento della variabile indipendente e nelle celle da B2 a G2 i coefficienti del polinomio.

Inserisci nella cella A4 il primo valore della variabile indipendente.

DegNorm1 d/c Real DIFFEREN					Deg Nor	m1 d/c Re	DIFFER	EN	
DIF	Α	В	С	D	DIF	D	E	F	G
1	INCR	Ax^5	Bx^4	Cx^3	1	Cx^3	Dx ²	Ex	F
2	1				2				
3	N	P(N)	DP	DDP	3	DDP	DDDP	DDDDP	DDDDDP
4	0				4				
5					5				
				1				,	Cx^3
FILE	EDIT	DELETE	SERT CLEA	R⊳	FILE	EDIT	DELETE	SERT CLEA	R□⊳

Non dimenticarti di inserire l' = nelle formule

Inserisci nelle celle da A5 a A10 i primi sei valori incrementati della variabile indipendente.

Si potranno così variare sia l'incremento sia il primo valore della variabile indipendente.

Non dimenticarti di inserire l' = nelle formule

Inserisci nelle celle da B4 a B10 i primi sette valori del polinomio.

Se inserisci i coefficienti del polinomio di quarto grado monico dell'attività precedente ottieni un ulteriore metodo di risoluzione dell'esercizio proposto.

	DegNorr	nl d/cRe	J DIFFER	EN
DIF	Α	В	С	D
1	INCR	Ax^5	Bx^4	Cx^3
2	1	0	1	-14
3	N	P(N)	DP	DDP
4	0	120		
5	1	25		
=B\$	62×A4	^5+C\$	2×A4′	`4+D\$
FILE	EDIT	DELETE	SERT CLEA	
	DegNorr	nl d/c Re	DIFFER	EN
DIF	Deg Norr A	nl d/c Re	addiffer) C	EN D
DIF	Deg Norr A 2	nl d/c Re B 4	aDIFFER C	EN D
DIF 6 7	DegNorr A 2 3	n1 d/c Re B 4 9	aDIFFER C	EN D
DIF 6 7 8	Deg Norr A 2 3 4	nl d/c Re B 4 9 16	aDIFFER:	EN D
DIF 6 7 8 9	Deg Norr A 2 3 4 5	nl d/c Re B 4 9 16 25	DIFFER:	EN D
DIF 6 7 8 9 10	Deg Norr A 2 3 4 5 6	n1 d/c Re B 4 9 16 25 60	DIFFER:	EN D
DIF 6 7 8 9 10 =B\$	DegNom A 2 3 4 5 6 2×A1	nl d/c Re B 4 9 16 25 60 0^5+C	C C S S S S S S S S S S S S S S S S S S	EN D 0^4+

Inserisci nelle colonne da C a G i valori delle differenze successive ed osserva attentamente i risultati.

Ê	Deg Norr	nl d/cRe	aDIFFER	EN		Deg Nor	m1 d/c Re	DIFFER	EN
DIF	Α	В	С	D	DIF	Ε	F	G	Н
1	INCR	Ax^5	Bx^4	Cx^3	1	Dx ²	Ex	F	
2	1	0	1	-14	2	72	-154	120	
3	N	P(N)	DP	DDP	3	DDDP	DDDDP	DDDDDP	
4	0	120	-95	74	4	-48	24	0	
5	1	25	-21	26	5	-24	24	0	
			=E	35-B4				=[)5-D4
FILL	SORTASC	SORTDES			FILE	EDIT	DELETE	SERT CLEA	R⊳
a	Deg Norr	n1 d/c Re	addiffer:	EN		Deg Norn	1 d/c Rei	DIFFERE	EN
DIF	Deg Norr A	nl d/cRe B	addiffer: C	EN D	DIF	Deg Norm	nl d/c Re F	DIFFERE G	en H
DIF	Deg Norr A 2	nl d/cRe B 4	DIFFER C 5	EN D 2	DIF	Deg Norn 12 0	11 d/cRe F 24	DIFFERE G	EN H
DIF 6 7	Deg Norr A 2 3	nl d/c.Re B 4 9	aDIFFER C 5 7	EN D 2 2	DIF 6 7	Deg Norn E 0 24	1 d/c Re F 24	DIFFERE G	EN H
DIF 6 7 8	Deg Norr A 2 3 4	n1 d/c Re B 4 9 16	aDIFFER C 5 7 9	EN D 2 2 26	DIF 6 7 8	Deg Norn D 0 24	1] <u>d/c Re</u> F 24	DIFFERE G	EN H
DIF 6 7 8 9	Deg Nom A 2 3 4 5	n1 d/c Re B 4 9 16 25	DIFFER C 5 7 9 35	EN D 2 2 26	DIF 6 7 8 9	DegNorm E O 24	1] <u>d/c</u> Re F 24		EN H
DIF 6 7 8 9 10	Deg Norr A 2 3 4 5 6	n1 d/c Re B 4 9 16 25 60	DIFFER: C 5 7 9 35	EN D 2 26	DIF 6 7 8 9 10	DegNorm C 0 24	1] (d/c)Re F 24	DIFFERE G	EN H
DIF 6 7 8 9 10	Deg Norr A 2 3 4 5 6	n] d/c Re B 4 9 16 25 60	addiffer C 5 7 9 35 =B1	EN D 2 26 26 0-B9	DIF 6 7 8 9 10	Des)Norm E 0 24	1] <u>d/c</u> Re F 24	DIFFERE G =D	ем н 08-D7

Deg Norm1 d/c Real DIFFEREN
Fill
Formula :=B5-B4
Cell Range:C4:G10
EXE

Cambiando i valori dell'incremento, del primo numero della variabile indipendente e dei coefficienti del polinomio si possono analizzare tante diverse possibili situazioni e scoprire interessanti formule matematiche.

Viceversa si potrebbe anche costruire un programma che a partire dai valori inseriti in una tabella di valori x e y permette di determinare i coefficienti del polinomio sfruttando proprio le successive differenze dei valori del polinomio.

I prossimi obiettivi

GALLERIA MATEMATICA

I risultati di apprendimento a conclusione del primo biennio dei nuovi Licei. Istituti Tecnici e Professionali

I risultati di apprendimento comuni alle Indicazioni Nazionali per i Licei e alle Linee Guida per gli Istituti Tecnici e Professionali sono stati selezionati nell'ambito di un progetto nazionale promosso dalla Direzione Generale per gli Ordinamenti Scolastici e per l'Autonomia Scolastica del MIUR che ha coinvolto numerosi docenti.

I prossimi obiettivi

	Qual è il grafico di y = f(x)?	$e^{i\pi}+1=0$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	Esistono solo cinque poliedri regolari
Equazioni di luoghi geometrici	Permutazioni Disposizioni Combinazioni	Come approssimare e, π, φ	90° 90° 90° 90° 90° = 270°	N ₀ Chi è <i>aleph-</i> zero?
I teoremi di <i>Lagrange</i> , <i>Rolle</i> , <i>l'Hôpital</i>	Problemi di massimo e minimo Il principio di induzione	Applicazione degli integrali al calcolo di aree e volumi	Dall'andamento del grafico alla possibile espressione analitica della funzione	Come approssi mare un integrale definito
Principio di Cavalieri	Cos'è un sistema assiomatico?	Quante volte devo giocare al lotto per vincere?	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	

